VFO-DO de W3PM…. précis et pas cher (oh, not again !)

Publié: 20 juillet 2017 dans Instrumentation

IMG_20170720_163015

De haut en bas : le milliwattmètre DL2SBA, le VFO-DO de W3PM, une version “améliorée” du fréquencemètre de Pongrance, plus de 15 ans de loyaux services. Un power splitter 6 dB précédé d’un atténuateur pas à pas (20 dB) expédie le signal 20 MHz du générateur vers le milliwattmètre et le fréquencemètre. Sur la droite, l’antenne de réception GPS 

Dans le numéro juillet-août 2015 de QEX, W3PM décrivait un générateur HF piloté GPS couvrant de quelques kHz à 116 MHz et d’une stabilité irréprochable. De manière très schématique, son montage repose sur trois modules du commerce : un Arduino nano, un bloc GPS et un oscillateur à triple sortie à base de Si5351. L’arduino pilote l’oscillateur en comparant un signal prélevé sur l’une des sortie du Si5351 avec une référence de 1pps délivré par le gps. La boucle d’asservissement est excessivement rapide et l’on peut être certain qu’une fois le gps verrouillé, la fréquence de sortie du VFO-DO est stable à 0,1Hz. Les trames NMEA du GPS peuvent également servir à afficher l’heure, la position géographique du VFO en coordonnées “locator” ou lat-long, le nombre de satellites reçus etc.

Jamais un tel montage ne viendra concurrencer un standard de fréquence genre OCXO/VCXO asservi par GPS, particulièrement en termes de bruit de phase. Mais un tel VFO stabilisé suffira amplement à tout OM n’ayant pas les moyens de s’offrir un “vrai” GPS-DO ou ne souhaitant pas voyager avec un équipement de laboratoire aussi coûteux que fragile.

La réalisation est du même genre que celle du milliwattmètre de DL2SBA. Les sources sont à télécharger sur le site de l’auteur, et l’on peut s’inspirer, pour ce qui concerne l’électronique, des variations sur ce même thème interprétées par F2DC ou enore par F6IDT. Comme pour le montage précédent, le pcb est disponible sur Github au format Kicad. Il me reste quelques cartes sur les bras si des OM sont intéressés.

IMG_20170720_104440IMG_20170720_104454

Ce cuivre est quasiment vide : une diode de protection évite tout danger lié à une inversion de polarité. Un premier régulateur fait chuter la tension d’alimentation aux environs de 7 V, et trois LDO 7805 alimentent respectivement l’oscillateur, le module GPS et l’ensemble Arduino/afficheur (le régulateur intégré à l’Arduino me semblant un peu léger s’il doit prendre en charge un gros LCD rétroéclairé 2×10)

L’assemblage électronique prends moins d’une heure, pause syndicale comprise, et il faut compter près d’une autre heure sinon deux pour l’aspect mécanique de la chose.

Le seul point délicat de ce projet est la récupération du 1pps. Tous les modules GPS vendus sur eBay communiquent en liaison série à 9600 bps (4800 pour les “récup” les plus anciennes). Seul le fil “TXd” du GPS –relié au port “RXd” de l’’Arduino bien entendu- est surveillé par le firmware. La broche du port RX du module GPS peut donc être utilisée à d’autres fins, notamment relier le fameux signal 1PPS.

IMG_20170718_155824

Un coup de cutter sur la piste RX

IMG_20170718_171828

brasure d’un connecteur Molex KK et repiquage d’un fil sur la broche anciennement destinée au port RX

IMG_20170720_083616

… et repiquage sur la résistance de la diode LED d’activité (coté module). Le câble coaxial situé sur la droite de la photo est celui allant vers l’antenne patch amplifiée/filtrée du module GPS.

IMG_20170718_181528

L’autre extrémité du câble est soudée sur l’entrée de l’antenne après démontage du capot de blindage.

IMG_20170720_083504

Il ne reste plus qu’à buriner le silicium de l’Arduino, mettre le feu aux poudres numériques et vérifier le bon fonctionnement de l’ensemble. L’affichage du locator confirme la bonne réception des trames NMEA transmises en mode sériel du GPS vers l’Arduino, et celui de l’heure la bonne gestion de l’interruption qui survient toutes les secondes.

IMG_20170720_083519

Coté face, le pcb arduino et son blindage périphérique au centre, le module oscillateur sur la gauche… et plein de place réservée. Rien n’interdit de paramétrer une des sortie de l’oscillateur sur une fréquence fixe… à tout hasard 10 MHz. Un 10 MHz “signal carré”, donc riche en harmoniques. Si l’on souhaite travailler avec une référence propre, tant d’un point de vue fréquence qu’énergie mesurée en sortie, il est souhaitable que le signal en question passe par un filtre à quartz qui éliminera tous les produits indésirables.

Le niveau de sortie est plutôt généreux, aux environs de 26 dBm. Pour ceux qui ne lisent pas le dBm dans le texte, ça fait tout de même 400 mW en anciens francs. Un atténuateur 3 dB en sortie, qu’il y ait ou non un filtre à quartz, ne fera pas trop de mal au signal et stabilisera l’impédance.

IMG_20170720_083605Le même coté pile, avant de percer la face arrière et y loger les prises d’alimentation et coax de sortie (VFO, 10 MHz fixe et entrée antenne gps). D’autres bouton-poussoirs peuvent être ajoutés, soit en façade, soir sur l’arrière selon l’usage que l’on souhaite faire de cet appareil : changement de bande, changement de pas  de balayage, reset, eau chaude, eau froide etc.

Coût de l’opération ? 3 euros de clone Arduino, 8 euros de gps, 8 euros d’oscillateur 8 euros encore et toujours pour un confortable LCD 20×2, soit 27 euros d’électronique. Le reste provenant de fonds de tiroirs (encodeur, boitier, chute de FR4  en fond de boite, filasse, SMA “made in China”  et lot de connecteurs kk achetés par boites de 100 sur eBay) ne doit pas excéder 5 ou 6 euros

Publicités

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s